If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+14x-98=0
a = 4.9; b = 14; c = -98;
Δ = b2-4ac
Δ = 142-4·4.9·(-98)
Δ = 2116.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-\sqrt{2116.8}}{2*4.9}=\frac{-14-\sqrt{2116.8}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+\sqrt{2116.8}}{2*4.9}=\frac{-14+\sqrt{2116.8}}{9.8} $
| (1/4)*n=25 | | x+(x*(2,5/100))=6765 | | 2(p+12)=5p+2 | | x-11/8=1/8 | | X+4=4x=90 | | X2+11x+30=(x+6)(x) | | 9+2p-5p=3-4p | | 6x+20=150-4x | | f(5)=1/3(5-4) | | 14+8=6x | | (w+4)^2-27=0 | | 3x+2x+80=90 | | A=0.25m+500 | | 5x=6x+2x | | 8x-2-3=3 | | 5x–5=3x+9 | | x-6=3.5 | | 3x-21=6-2x | | 3x+3=-57 | | -2+4x=6(x+4) | | 3a+3=6a+7 | | -2+4x=6(x+4 | | 3x+50=x+70 | | 2/3(x+4)=-24 | | (X^2+2)(3x-2)=0 | | x2ª+1=30 | | -(x+3)/2=65 | | -x+5/4=-6 | | 5x+7=−14+8x | | 4x(x+4)=4x2+16x | | 4x²+4x=15 | | 5-2×a=-7 |